

HARMONIOUS

UAS Techniques for Environmental Monitoring

Petr Dvorak & Josef Bruna – Valencia – February 15, 2017

Unmanned aircraft for alien plant species detection and monitoring

Institute of Aerospace Engineering

VUT 001 Marabu experimental, designed, build and in-flight tested by IAE

VUT 100 Cobra 4-seat aircraft designed and tested by IAE

KP-2U Sova microlight airplane designed and tested by IAE

SPARTAN Mars lander demonstrator

Institute of Aerospace Engineering - UAVs

Institute of Aerospace Engineering - UAVs

Institute of Aerospace Engineering - BRS

GALAXY GBS 10 UAV PARACHUTE BALLISTIC RESCUE SYSTEM

DEVELOPMENT AND TESTING

Institute of Aerospace Engineering – UGVs/boats?

Why alien plant species?

Why alien plant species?

- threat to biodiversity, ecosystem functionality, traditional landscapes
- impact grows despite the worldwide efforts to control and eradicate
- once fully established hard to permanently eliminate

-> fast and precise monitoring for rapid actions is crucial

giant hogweed; knotweeds; tree of heaven; black locust Heracleum mantegazzianum

giant hogweed; knotweeds; tree of heaven; black locust Fallopia japonica, xbohemica, sachalinensis

giant hogweed; knotweeds; tree of heaven; black locust

Ailanthus altissima

giant hogweed; knotweeds; tree of heaven; black locust

Robinia pseudoacacia

Unmanned aircraft

Fundamental requirements

- map a site >= 80 ha in <1h
- GSD <= 7cm/px
- minimum pre-flight and post-flight procedures
- reliability
- low cost
- transportability car + hand by one person for at least 1km

20km of flight

overlap)

(Canon S100, 80x80%

Unmanned aircraft – development platforms

VUT 720

VUT 712

VUT 713

Unmanned aircraft – development platforms

	VUT 712	VUT 713	VUT 720
Span	2.1 m	2.0m	2.6 m
Length	0.9 m	0.7m	1.3 m
m _{TOW}	3.1 kg	3kg	2.2 kg
VC	17 m/s	18m/s	15 m/s
Endurance	0.9 hr	0.8hr	1 hr
Power	800 W	600 W	360 W
Payload	0.8 kg	0.9 kg	0.3 kg
Autopilot	Pixhawk autopilot	Pixhawk autopilot	APM2.5+ autopilot
Camera	2x Canon S100 stabilized	2x Sony A5100 + E20/2.8	1x Canon S100+ 1x GoPro
Based on	SkyWalker X8	RVJET	Multiplex Cularis

Why?

- Optimized performance
- Smaller size -> Better transportability
- No connectors, loose cables etc.
- Better payload accomodation

- We like to build new airplanes :-)

The approach:

In-flight measurements

The approach:

Reverse engineering

The approach:

Simulations

The approach:

Design

The approach:

Design

The approach:

Prototyping

The approach:

Prototyping

The approach:

Material & component evaluation

The approach:

Manufacturing

The result:

Manned aircraft

TL3000 Sirius

WT-9 Dynamic

Workflow

Workflow

A/ In-situ research/ ground truthing

- RTK GPS
- Collector for ArcGIS
- Field spectrometer: Spectral evolution

Workflow

UAV data acquisition

UAV data acquisition - sensors

Stabiliz

Georef ng

Trigger

Total W

bg.

UAV data acquisition - spectral resolution

Workflow

SFM - Mosaicking

Approximately 800 VIS + 800 NIR images for a single mission

Workflow

Classification - approaches

 spatial resolution higher than the plant size, distinct shape/texture → object-based (rule-based, hierarchical)

- lower spatial & higher spectral resolution, less distinct → pixel-based
- problematic → hybrid approach

Classification – UAV data, black locust

Classification – UAV data, black locust

Classification – timing is important

Conclusions

- Worse satellite spatial resolution is outweighed by better spectral resolution compared to low-cost UAV sensors
- Crucial advantage of UAVs is in their flexibility precise timing of the data acquisition according to the phenology of the plant of interest
- Legal constraints of UAV deployment might be very limiting
- Classification method depends on the target species characteristics

Further work

- Open source SFM implementation
- RTK workflow implementation
- Multispectral sensor (MicaSense RedEdge)

Further information

www.invaznirostliny.cz/en

Acknowledgements

T A

ČR

Supported by TA ČR, TA04020455 Detection and monitoring of invasive species using unmanned aircraft

Received funding from the MEYS under the National Sustainability Programme I (Project LO1202)

