HARMONIOUS
UAS Techniques for Environmental Monitoring
Flavia Tauro – Valencia, February 15th 2018
Streamflow observations from UASs: technical challenges and image processing
Agenda

- Objective: improving and increasing observations
- State of the art on streamflow observations
- Methodology: setup and algorithms
- Case study
- Conclusions
Improving and increasing observations

- Hydrological process understanding demands data
- What is needed:
 - New measurement techniques and equipment
 - More field measurements and monitoring
- Greatest challenge:
 - Maintenance of monitoring networks
Improving and increasing observations

- Traditional monitoring systems

- Where we stand: [http://www.bafg.de]
 - Limited spatial and time coverage
 - Expensive equipment
 - High maintenance costs
Improving and increasing observations

- Novel sensing systems
 - Multi-disciplinarity
 - Innovation (smart, opportunistic measurements)
 - Affordable solutions

Measurements and Observations in the XXI century (MOXXI): innovation and multi-disciplinarity to sense the hydrological cycle

Flavia Tauro¹, John Selker¹, Nick van de Giesen¹, Tommaso Abrate¹, Remko Uijlenhoet ⁰, Maurizio Poffini³, Salvatore Manfredi³, Kelly Caylor³, Tommaso Moramarco³, Jerome Benveniste³, Giuseppe Ciacio³, Lyndon Estes⁴, Alessio Domenghetti⁴, Matthew T. Perks⁴, Chiara Corbari⁵, Ehsan Rabiei⁶, Giovanni Ravazzani ⁰, Heye Bogena³, Antoine Harfouch⁴, Luca Brocca³, Antonino Maltese³, Andy Wickert³, Angelica Tarpanelli⁴, Stephen Good⁶, Jose Manuel Lopez Alcala⁶, Andrea Petroselli⁵, Christophe Cudennec⁵, Therese Blumer², Rolf Hutt¹ and Salvatore Grimaldi²

¹Department of Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, Italy; ²Department of Biological and Ecological Engineering, Oregon State University, Corvallis, Oregon, USA; ³Department of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands; ⁴INB System in Hydrology Division, World Meteorological Organization, Geneva, Switzerland; ⁵Department of Environmental Sciences, Wageningen University and Research, Wageningen, The Netherlands; ⁶Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, New York, USA; ⁰Department of Cultural Heritage and Sustainable Development, University of Basilicata, Potenza, Italy; ¹Earth Research Institute, University of California Santa Barbara, Santa Barbara, California, USA; ²Research Institute for Geo-Hydrological Protection, National Research Council, Pergusa, Italy; ³Department of Earth Observation Future Missions, Science and Applications, European Space Agency ESRIN, Frascati, Italy; ⁴Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università degli Studi di Palermo, Palermo, Italy; ⁵Graduate School of Geography, Clark University, Worcester, Massachusetts, USA; ⁶Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, Bologna, Italy; ⁷School of Geography, Politics and Sociology, Newcastle University, Newcastle upon Tyne, UK; ⁸Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, Italy; ⁹ETH Hannover, Hannover, Germany; ¹⁰Institute of Bio- and Geosciences, Forschungszentrum Jülich, IEK-3, Jülich, Germany; ¹¹Department of Earth Sciences, University of Minnesota, Minneapolis, Minnesota, USA; ¹²Department of Electrical Engineering & Computer Science, Oregon State University, Corvallis, Oregon, USA; ¹³Department of Economics, Engineering, Society and Business Organization, University of Tuscia, Viterbo, Italy; ¹⁴UMR SAS, Agrocampus Ouest, Rennes, France; ¹⁵UZ German Research Centre for Geosciences, Section Hydrology, Potsdam, Germany
State of the art: streamflow observations

- How is streamflow currently measured?

- Pointwise observations at selected cross-sections
- Often invasive measurements
- Expensive equipment
- Rare measurement campaigns
State of the art: streamflow observations

- Multiscale and heterogeneity

RILLS:
- hillslope rills:
 - from a few to several cm
 - turbidity
 - vegetation

STREAMS:
- streams:
 - sediments
 - high regime
 - shallow depths
 - irregular beds
 - reflections

RIVERS:
- rivers:
 - high flow regime
 - vegetation
 - large cross-section and depths
State of the art: streamflow observations

- Difficult-to-access environments
 - Sensor deployment
 - Operators’ safety issues
State of the art: streamflow observations

- Fastly evolving processes
Proposed methodology

- Using optic technology and image analysis to measure streamflow

Diagram:
- Stream flow
- Overland flow
- Channel flow
Methodology

- Images offer several advantages
 - Noninvasive observations
 - Spatially distributed measurements
 - Potentially high time resolution
 - Observations at multiple scales
Methodology: algorithms

- From raw to usable data

1. Frame extraction
2. Camera calibration
3. Image orthorectification
4. Frame calibration
5. Frame enhancement
Methodology: algorithms

- Large Scale Particle Image velocimetry
Methodology: algorithms

- Particle Tracking Velocimetry
Methodology: setup

- Unmanned aerial systems for surface flow velocity field observations
Case study

- Feasibility assessment

[Tauro et al., 2016, *J. Hydrol.*]
Case study

- Surface flow measurements

Conclusions

- UASs offer several advantages with respect to traditional instrumentation for streamflow observations
- Low-cost platforms have led to reliable surface flow velocity maps
- Image processing with alternative algorithms may lead to quicker measurements

Future directions

- Fully remote discharge measurements
- Real-time streamflow measurements