sex videos kinky babe fisting her large pussy. hungry mom loves throat fucking.

WP6. Disseminate generated knowledge and tools for actual sustainable water management (Univ. Twente, and all groups operating sites)

Lead: Bob Su (Uni. Twente)

Participate: Uni. Naples, Uni. Basilicata, CAR-HAS, TAU, UPV

Task 6.1 iAqueduct toolbox

The results of analysis in previous WPs will be integrated into a library as the iAqueduct toolbox which consists of water flow processes in relations to the models, soil and vegetation parametrizations and soil parameters as well as forcing fields. The existing open–source software system MajiSys water information system at University of Twente will serve as the integration platform. Such a toolbox will then be used for robust application (incl. machine learning algorithms) to other sites and also for use by stakeholders (See WP5 and WP6).

Task 6.2 Case studies

The aim of WP6 is to disseminate and communicate the generated knowledge and tools to water managers, companies and farmers for actual sustainable water management. In order to be effective, stakeholders will be engaged in the entire project for the effective transfer of the project achievements and will be consulted for the actual needs for real life water management. We will use the 2018 summer European drought as a concrete retrospective application to demonstrate the advantage of using detailed water cycle information for water management. The aim here is connecting science to society in order to experiment approaches to influence stakeholders (in particular citizens) towards desirable behaviour. Besides the traditional activities of dissemination such as the project website and newsletters, a series of three workshops will be planned at each year of the project, working in close collaboration with the COST Action HARMONIOUS in order to disseminate our results over a larger audience that includes researchers, stakeholders and private companies. Stakeholders will be expected to take active role in the project, and specific actions will be focused on depending on the local circumstances. For the selected specific sites, detailed actions will take place as follows.

University of Twente will involve the water authority Vechtstromen (for which lasting collaboration exists, The developed scaling functions and soil and water datasets will be used by the company Cosine to develop machine learning algorithms. University of Twente and Deltares are in further development of the MajiSys water information system (developed in a joint project), which will serve as the information backbone of the iAqueduct project and the new development will be readily taken up by Deltares for application in the national Delta plan for water management under climate change;

University of Naples will collaborate with the “Velia” Consortium Authority of Land Reclamation (which manages the dams and the irrigation district) and the “Cilento and Diano Valley” National Park (the largest park in Italy);

The Confederacion Hidrografica del Jucar (CHJ) as the Spanish Water Authority for part of the Mediterranean basins of Spain will use the case study by the Universitat Politecnica de Valencia to help solve the climatic, environmental and socio-economic problems in the practice of water management. The Spanish company with European experience in UAS, Geosystem, will uptake the project results in developing services;

Scenarios will be worked out for each of the selected sites using a technique developed in the EC CORE-CLIMAX project (Su et al., 2018 BAMS) whereby the distribution of forcings will be derived from the 2018 summer European drought period and by replacing the distribution with that of another site, mimicking potential future climate changes and impact to water resources. For example, the observed climate in the Twente region during the drought of 2018 summer will be replaced by that of the Spanish or Italian site and the spatio-temporal water situation in the Twente region be simulated. In collaboration with the water authority Vechtstromen, potential management scenarios will be developed and citizens will be invited to propose additional measures (e.g. water saving measures) as a preparation for such a scenario, thus connecting science to the society more effectively and influencing citizens towards desirable behaviour. For example, a first response to the water crisis experienced toward the end of eighties and beginning of nineties in the Alento catchment in Italy was the construction of the earthen dam at Piano della Rocca, which has been operating since 1994. Would the citizens in the Twente region welcome a similar measure? What else would be needed in order to cope with future drought events? These and other questions by the water authorities and citizens alike could then be worked out in the chosen scenarios.



D6.1. Scenarios for actual sustainable water management with stakeholders (with the drought events in 2018 as concrete cases) (month 10-12).

D6.2. Connecting science to society – approaches to influence stakeholders (in particular citizens) towards desirable behaviour (month 34-36):

  • 2-1a. Options for optimal water management in Twente (Uni. Twente interacts with the water authority Vechtstromen);

D6.2-1b. Machine learning algorithms (Uni. Twente with the company Cosine);

D6.2-1c. Suggestion for application of the iAqueduct toolbox in the national Delta plan for water management under climate change (Uni. Twente with the Deltares);

  • 2-2. Demonstration in the “Cilento and Diano Valley” National Park (Uni. Naples will collaborate with the “Velia” Consortium Authority of Land Reclamation);
  • 2-3a. Case study to help solve the climatic, environmental and socio-economic problem in the practice of water management (UPV with the Confederacion Hidrografica del Jucar (CHJ));

D6.2-3b. Initiative for up-taking project results in developing services (UPV with Geosystem).

D6.3. iAqueduct toolbox (month 22-24)


Implementation Plan:

(to be updated)

big black teen apparel theft. cassandra nix and eva karera threesome.